Identification of Erythroxylum taxa by AFLP DNA analysis.
نویسندگان
چکیده
Erythroxylum coca, indigenous to the Andean region of South America, is grown historically as a source of homeopathic medicine. However, in the last century, cultivation of E. coca and several closely-related species for the production of illicit cocaine has become a major global problem. Two subspecies, E. coca var. coca and E. coca var. ipadu, are almost indistinguishable phenotypically; a related cocaine-bearing species also has two subspecies (E. novogranatense var. novogranatense and E. novogranatense var. truxillense) that are phenotypically similar, but morphologically distinguishable. The purpose of this research was to discover unique AFLP DNA patterns ("genetic fingerprinting") that characterize the four taxa and then, if successful, to evaluate this approach for positive identification of the various species of coca. Of seven different AFLP primer pairs tested, a combination of five proved optimal in differentiating the four taxa as well as a non-cocaine-bearing species, E. aerolatum. This method of DNA fragment separation was selective, and faster, for coca identification, compared with analyses based on flavonoid chemotaxonomy. Using the 5-primer AFLP approach, 132 known and unknown coca leaf accessions were evaluated. Of these, 38 were collected in 1997-2001 from illicit coca fields in Colombia, and all were genetically differentiated from coca originating in Peru and Bolivia. Based on the DNA profiling, we believe that the Colombian coca now represents a hybridization of E. coca var. ipadu. Geographical profiling within Colombia also seems feasible as new coca production areas are developed or new types of coca are introduced within traditional growing areas.
منابع مشابه
Inter- and intra-specific variation among five Erythroxylum taxa assessed by AFLP.
BACKGROUND and Aims The four cultivated Erythroxylum taxa (E. coca var. coca, E. novogranatense var. novogranatense, E. coca var. ipadu and E. novogranatense var. truxillense) are indigenous to the Andean region of South America and have been cultivated for folk-medicine and, within the last century, for illicit cocaine production. The objective of this research was to assess the structure of g...
متن کاملAssessment of genetic diversity in 31 species of mangroves and their associates through RAPD and AFLP markers.
Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity in 31 species of mangroves and mangrove associates. Four AFLP primer combinations resulted in the amplification of 840 bands with an average of 210 bands per primer combination and 11 RAPD primers yielded 319 bands with an average of 29 bands per primer. Th...
متن کاملComparison of amplified ribosomal DNA restriction analysis, random amplified polymorphic DNA analysis, and amplified fragment length polymorphism fingerprinting for identification of Acinetobacter genomic species and typing of Acinetobacter baumannii.
Thirty-one strains of Acinetobacter species, including type strains of the 18 genomic species and 13 clinical isolates, were compared by amplified ribosomal DNA restriction analysis (ARDRA), random amplified polymorphic DNA analysis (RAPD), and amplified fragment length polymorphism (AFLP) fingerprinting. ARDRA, performed with five different enzymes, showed low discriminatory power for differen...
متن کاملIdentification of novel genes expressed in Brassica napus during leaf senescence and in response to oxidative stress
Senescence is a genetically regulated oxidative process that involves a general degradation of cellular structures and enzymes and the mobilization of the products of degradation to other parts of the plant. The cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism) analysis has been used under stringent PCR conditions afforded by ligation of adapters to restriction fragments, and the use of s...
متن کاملIdentification of Clostridium species and DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis.
An amplified fragment length polymorphism (AFLP) method was applied to 129 strains representing 24 different Clostridium species, with special emphasis on pathogenic clostridia of medical or veterinary interest, to assess the potential of AFLP for identification of clostridia. In addition, the ability of the same AFLP protocol to type clostridia at the strain level was assessed by focusing on C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 64 1 شماره
صفحات -
تاریخ انتشار 2003